

Components of an EC drive system

Brushless DC motor

- names: EC motor, BLDC motor
- motor behavior similar to DC motor
 - design similar to synchronous motor (3 phase stator winding, rotating magnet)
 - the powering of the 3 phases according to rotor position
- main advantages: higher life, higher speeds
- slotless windings
 - similar advantages as coreless DC motors
 - no magnetic detent, less vibrations
- becomes more attractive: costs, size, magnets

maxon EC motor

EC-max: design characteristics

Philosophy: reliable EC motor at reasonable price

- standard maxon winding
 - only star circuit possible
 - not optimized with respect to performance (power)
- Hall sensors monitor directly the power magnet
 - no control magnet
 - special orientation process of Hall sensors to winding
- no balancing rings
 - very high speeds are not possible (up to 12 20'000 rpm)
- preloaded ball bearings
- Iong and short versions per diameter

EC-4pole: design characteristics

Philosophy: the strongest possible EC motor

- very high torque and acceleration
 - knitted maxon winding
 - hexagonal winding on long versions
 - 4-pole permanent magnet
- moderate speeds up to 25'000 rpm
 - higher commutation frequency
 - higher iron losses
- special orientation process of Hall sensors to winding
- preloaded ball bearings

maxon EC motor: Slotted design

- maxon EC-i
 - Philosophy: strong EC Motor at an attractive price
 - dynamic motor, cogging torque
 - slotted winding, internal rotor
 - several magnetic pole pairs
- flat maxon EC motor
 - Philosophy: flat EC Motor at an attractive price
 - slotted winding, external rotor
 - more than 4 magnetic pole pairs
 - relatively high torque but limited speed and dynamics

EC flat motor: design characteristics

Philosophy: flat design with attractive price

rotor:

- external rotor => high torque
- multi-pole magnetic ring of NdFeB
 => higher commutation frequency,
 => not very high speeds

stator:

3 phases, several teeth per phase

further characteristics:

- Hall sensors detect magnetic ring
- but also often sensorless
- preloaded ball bearings

Part 2: Interaction of rotor and stator

- current distribution in phases
 - 3 phases: 6 possible current distributions
 - 6 winding magnetic field directions rotated by 60°

- origin: rotating magnet
- hysteresis losses
 - changing the direction of magnetization needs energy
- eddy current losses
 - rotating magnetic field causes eddy currents
- effects: additional motor heating
 - at high speeds less current for torque generation is allowed
 - see operation range diagram

Part 3: Electronic commutations systems

- common goal: applying the current to get the maximum torque
 - perpendicular magnetic field orientation of
 - rotor (permanent magnet)
 - and stator (winding)
- knowledge of rotor position with respect to winding

Multi-pole EC motor: commutation

Sensorless block commutation

Block commutation

- motor with 1 pole pair
 - position known within 60°
 - commutation every 60°
- motor with P pole pairs
 - position known within 60°/ P
 - commutation every 60°/ P
- block shaped phase currents
 - torque ripple
 - vibrations, humming

Sinusoidal commutation

Part 4: DC and EC motor: Comparison

DC motor

- simple operation and control, even without electronics
- no electronic parts in the motor
- brush commutation system limits motor life
- max. speed limited by commutation system

EC motor

- Iong life, high speeds
 - preloaded ball bearings
- no brush fire
- iron losses in the magnetic return
- needs electronics to run
 - more cables
 - more expensive
- electronic parts in the motor (Hall Sensor)

