

Coreless maxon DC motor (RE 35)

Advantage coreless: no cogging

- no soft magnetic teeth to interact with the permanent magnet
- smooth motor running even at low speed
- less vibrations and audible noise
- any rotor position can easily be controlled
- no nonlinearities in the control behavior

Advantage coreless: no iron losses

- no iron core no iron losses
- constantly impressed magnetization
- high efficiency, up to over 90%
- Iow no-load current, typically < 50 mA</p>
- does not apply to EC motors
- no saturation effects in the iron core
- Even at the highest currents the produced torque is proportional to the motor current.
- stronger magnets = stronger motors

Advantage coreless: compact design

- more efficient design of the magnetic circuit (even with a larger air gap)
 - compact magnet in the centre
 - high power density
- small rotor mass inertia
 - hollow cylinder vs. plain cylinder
 - high dynamics
 - typical acceleration times: 5 50 ms

- less brush fire
 - Commutation: Closing and opening of a contact over an inductive load
- Ionger service life
- less electromagnetic emissions
- easier to suppress interferences:
 - capacitor between connections
 - ferrite core at motor cable
- fast current reaction
 - might cause problems with pulsed supply (pulse width modulation PWM)
 - motor choke needed?

maxon DC motor families

- RE motor range
 - power optimized
 - high performing DC motor with NdFeB magnet
 - high torques and speeds
- A-max motor range
 - attractive price-performance ratio
 - DC motor with AlNiCo magnet
- RE-max motor range
 performance between RE and A-max

maxon DC motor families comparison

permanent magnet	AlNiCo	NdFeB
motor range	A-max, S, A	RE, RE-max
example	A-max 19 GB	RE 13 GB
speed / torque gradient	1150 min ⁻¹ /mNm	1250 min ⁻¹ /mNm
rated power	2.5 W	3 W
diameter	19 mm	13 mm
length	31.5 mm	34.5 mm
motor dimension	8.9 cm ³	4.6 cm ³
cont. torque	3.8 mNm	2.4 mNm
approximate price	≈ 50 CHF	≈ 100 CHF
		maxon motor
		driven by precision

Permanent magnets

Coreless winding systems

coreless (DC) - slotless (EC)

1 2 3 4 5

15 6 7 8 9 1

Torque and current: k_M

Speed and voltage: speed constant

- in an inhomogeneous magnetic field
- induced voltage U_{ind} (EMF) depends on
 - geometry
 - magnetic flux density

speed n

speed constant k_n

- inversely proportional to k_M
- inversely proportional to generator constant (V/1000 rpm)

design

application

DC commutation: torque ripple

DC commutation: terminal resistance

DC commutation: Characteristics

Graphite

- well suited for high currents and peak currents
- well suited for start-stop and reversing operation
- larger motors (>approx. 10 W)
- higher friction, higher no-load current
- not suited for small currents
- higher audible noise
- higher electromagnetic emissions
- higher costs

Precious metal

- well suited for smallest currents and voltages
- well suited for continuous operation
- smaller motors
- very low friction
- Iow audible noise
- Iow electromagnetic interference
- cost effective
- not suited for high current and peak currents
- not suited for start-stop operation

Ball and sleeve bearings: characteristics

Ball bearing

- well suited for high radial and axial loads
- well suited for all operating modes, for start-stop and reversing operation
- on larger motors
- more audible noise if not preloaded
- when preloaded higher friction
- more expensive

Sintered sleeve bearings

- suited for low radial and axial loads
- suited for continuous operation at higher speeds
- smaller motors
- Iow friction and noise
- cost effective
- not suited for start-stop operation

